Design of prestressed concrete precast road bridges with hybrid simulated annealing

Diseño de puentes de carretera de hormigón prefabricado pretensado usando un algoritmo híbrido basado en el recocido simulado

MARTÍ, J.V.; GONZÁLEZ-VIDOSA, F.; YEPES, V.; ALCALÁ, J. (2013). Design of prestressed concrete precast road bridges with hybrid simulated annealing. Engineering Structures, 48:342-352. DOI:10.1016/j.engstruct.2012.09.014. ISSN: 0141-0296.(link)

Artesa-Img6122En este trabajo se describe un método para el análisis y el diseño de puentes de carretera prefabricados de hormigón pretensado, con sección transversal en doble U y vanos isostáticos. El procedimiento utilizado para resolver este problema combinatorio es una variante del algoritmo del recocido simulado, usando como movimiento basado en un operador de mutación de los algoritmos genéticos (SAMO). El algoritmo se aplica al coste económico de estas estructuras a lo largo de las diferentes etapas de su fabricación, transporte y construcción. El problema implica 59 variables de diseño discretas para definir la geometría de la viga y de la losa, los materiales en estos dos elementos, y la armadura activa y pasiva. Del estudio paramétrico se concluye una buena correlación entre el coste, las características geométricas y el armado con respecto a la luz del puente, lo cual es de gran interés para el predimensionamiento de estos puentes prefabricados. También se realizó un análisis de sensibilidad al cambio de los costes, comprobándose que si existe un aumento del 20% en el coste del acero, entonces se produce un incremento del 11,82% del coste total. Sin embargo, un aumento en el 20% en el coste del hormigón, produce sólo un incremento del 4,20% en el coste total, 2,8 veces menos. Este análisis también mostró que las características de los puentes optimizados dependen de los escenarios económicos contemplados para el precio del acero y del hormigón. Indicar por último que existe un incremento del volumen necesario de hormigón cuando se eleva el coste del acero; pero sorprendentemente, la variación en el volumen de hormigón es casi insensible a su encarecimiento.

imagen

Resultados interesantes:

  • El coste del puente se duplica cuando la luz aumenta de 20 a 40 m.
  • La resistencia característica del hormigón en la viga oscila entre 40 y  50 MPa para los rangos entre 20 y 40 m de luz, mientras que en la losa se encuentra entre 35 y 40 MPa.
  • El canto de la viga presenta una esbeltez que no baja de L/18.
  • El espesor de las almas es de 10 cm en todos los casos. El resto de variables se encuentran en función de la luz y permiten un predimensionamiento de la estructura.
  • El estudio de sensibilidad de precios indica que un incremento del 20% en el coste del acero supone un aumento del coste total del 11,82%. Sin embargo, el incremento es del 20% en el hormigón, el coste total sólo sube un 4,20%. La subida del acero lleva a estructuras con menos cuantías de acero, pero existe una variación significativa en el volumen del hormigón cuando éste sube el 20%.

ABSTRACT

This paper describes one approach to the analysis and design of prestressed concrete precast road bridges, with double U-shaped cross-section and isostatic spans. The procedure used to solve the combinatorial problem is a variant of simulated annealing with a neighborhood move based on the mutation operator from the genetic algorithms (SAMO). This algorithm is applied to the economic cost of these structures at different stages of manufacturing, transportation and construction. The problem involved 59 discrete design variables for the geometry of the beam and the slab, materials in the two elements, as well as active and passive reinforcement. The parametric study showed a good correlation for the cost, geometric and reinforcement characteristics with the span length, which can be useful for the day-to-day design of PC precast bridges. A cost sensitivity analysis first indicates that a maximum 20% rise in steel costs leads to an 11.82% increase in the cost, while a 20% rise in concrete costs increases the cost up to 4.20%, namely 2.8 times less. The analysis also indicated that the characteristics of the cost-optimized bridges are somewhat influenced by different economic scenarios for steel and concrete costs. Finally, there is a growth in the volume of concrete when the steel cost rises; surprisingly, the variation in the volume of concrete is almost insensitive to its rising price.

KEYWORDS

Concrete structures; Heuristic optimization; Precast beams; Prestressed concrete structures; Simulated annealing; Structural design