UPV



Resultados de la búsqueda By Etiquetas: multiobjective-optimization


Multiobjective optimization of post-tensioned concrete box-girder road bridges considering cost, CO2 emissions, and safety

Sin título

ACCESO LIBRE AL ARTÍCULO:

The following personal article link, which will provide free access to your article, and is valid for 50 days, until September 14, 2016

http://authors.elsevier.com/a/1TROAW4G4Bhqk

Abstract: This paper presents a multiobjective optimization of post-tensioned concrete road bridges in terms of cost, CO2 emissions, and overall safety factor. A computer tool links the optimization modulus with a set of modules for the finite-element analysis and limit states verification. This is applied for the case study of a three-span continuous post-tensioned box-girder road bridge, located in a coastal region. A multiobjective harmony search is used to automatically search a set of optimum structural solutions regarding the geometry, concrete strength, reinforcing and post-tensioned steel. Diversification strategies are combined with intensification strategies to improve solution quality. Results indicate that cost and CO2 emissions are close to each other for any safety range. A one-euro reduction, involves a 2.34 kg CO2 emissions reduction. Output identifies the best variables to improve safety and the critical limit states. This tool also provides bridge managers with a set of trade-off optimum solutions, which balance their preferences most closely, and meet the requirements previously defined.

Keywords

  • Multiobjective optimization;
  • CO2 emissions;
  • Safety;
  • Post-tensioned concrete;
  • Box-girder bridge;
  • Multiobjective harmony search

Highlights

  • A multiobjective optimization of post-tensioned concrete road bridges is presented.
  • A computer tool combines finite-element analysis and limit states verification.
  • Output provides a trade-off between cost, CO2 emissions, and overall safety factor.
  • Near the optima, a one-euro reduction represents a 2.34 kg CO2 emissions reduction.
  • Results show the cheapest and most eco-friendly variables for improving safety.

Reference:

GARCÍA-SEGURA, T.; YEPES, V. (2016). Multiobjective optimization of post-tensioned concrete box-girder road bridges considering cost, CO2 emissions, and safety. Engineering Structures, 125:325-336. DOI: 10.1016/j.engstruct.2016.07.012.

11 agosto, 2016
 
|   Etiquetas: ,  ,  ,  ,  ,  |  

Sustainable design using multiobjective optimization of high-strength concrete I-beams

GARCÍA-SEGURA, T.; YEPES, V.; ALCALÁ, J. (2014). Sustainable design using multiobjective optimization of high-strength concrete I-beams. The 2014 International Conference on High Performance and Optimum Design of Structures and Materials HPSM/OPTI 2014, 9-11 June, Ostend, Belgium. WIT Transactions on The Built Environment, Vol 137, pp. 347-358. doi: 10.2495/HPSM140331 ISBN: 978-1-84564-774-2 / 1746-4498

ABSTRACT

imagesSustainable designs require long-term environmental vision. To this end, this study proposes a methodology to design reinforced concrete I-beams based on multiobjective optimization techniques. The objective funcions are the economic cost, the CO2 emissions, the service life, and the overall safety coefficient. The procedure was applied to a simply supported concrete I-beam including several high-strength concrete mix compositions. The solution of this 15 m beam was defined by a total of 20 variables. Results indicate that high-strength concrete is used for long-term solutions. Further, the economic feasibility of low-carbon structures remaining in service for long periods and ensuring safety is proven. This methodology is widely applicable to different structure designs and therefore, gives engineers a worthy guide to enhance the sustainability of their designs.

KEYWORDS

Multiobjective optimization, sustainability, high-strength concrete, I-beam, durability

11 diciembre, 2014
 
|   Etiquetas: ,  ,  ,  ,  |  

Universidad Politécnica de Valencia